ENSURING BANKABILITY IN SWM \& WTE PROJECTS IN INDIA

PREPARED FOR $3^{\text {RD }}$ INTERNATIONAL WORKSHOP ON
"SUSTAINABLE MUNICIPAL SWM IN INDIA"

ORGANIZED BY - WASTE TO ENERGY RESEARCH \& TECHNOLOGY COUNCIL

Presentation Outline

Indian Waste Scenario
Indian SWM Industry
MSW Value Chain
Project Size Considerations
Structuring Projects \& Example Business Models
SWM/WTE Project Development Challenges
The Consortium SPV Structure Advantages
Additional Financing Considerations

PM Narendra Modi's Mission

Swachh Bharat / Clean India

Indian Waste Scenario - Favorable Climate

\checkmark India's annual generation of urban waste is $\sim 69 \mathrm{M}$ tons
\checkmark Expected to increase to 137M tons annually by 2025
$\checkmark \quad 63.7 \%$ of MSW is not collected
$\checkmark \quad$ Large potential and under-penetrated
\checkmark PPP emerging as new model for SWM
$\checkmark \quad$ Current spending on waste management by municipalities is principally on collection and transportation
$\checkmark \quad$ Potential of about 1700 MW from urban waste (1500 from MSW and 225 MW from sewage) and about 1300 MW from industrial waste exists in India
$\checkmark \quad$ Indian municipal solid waste to energy market could be growing at a compound annual growth rate of 9.7% by 2013

MSW Generation in India (Million Tons)

Sample Waste Characteristics

Indian Waste Scenario - Key Factors

Key Drivers

Increasing Population \rightarrow Increasing Waste

\square Burgeoning population is ensuring India is generating waste in epic proportions that is overstressing the already overburdened municipal infrastructure

Reducing Space of Landfills

V Increasing gravitation of population to metro and tier II cities has dramatically reduced space available for landfills
\square Existing mismanaged landfills are overflowing

Landfill Mismanagement \rightarrow Health Issues

\square Improper SWM is deteriorating public health, causing environmental pollution \& climate change and greatly impacting the quality of life of citizens

Accelerated Government Initiatives

\square Many government schemes are being provided for infrastructure development in small and medium sized towns

Key Challenges

Inefficient Storage / Segregation System

\square Source storage and segregation of waste based on degradability and hazards is almost not done in India
\square Proper planning and specific benchmarks for street sweeping do not exist

High Reliance on Age-old Technologies

\boxtimes Absence of scientific landfills encourages open dumping of wastes which are highly polluting to nearby aquifers, water bodies and settlements

Lack of Financial Closures and a Fragile Regulatory Framework

- There is lack of bankable and financially sustainable projects considering the opportunities and risks involved
- An ambitious waste management strategy without considering project development realities is resulting in stalled projects

Indian SWM Industry - Quick Snapshot

- Household level coverage of waste C\&T in metro and Tier I cities is 100%
- For example $B M C^{(1)}$ spends \sim Rs. $1160 /$ ton (\$25/ton) on C\&T and disposal of MSW
- C\&T constitutes $\sim 80 \%$ of the total cost of a project
- In India, the average municipal expenditure on solid waste management is `500 to ` $1500 /$ ton ($\$ 10$ to \$32/ton)

Collection \& Transportation

- Segregation is an emerging practice at the household level with awareness increasing slowly but steadily
- Rag pickers pick up recyclables from bins and sell them in the market
- Due to this informal segregation, volume reduction is achieved, but it ignores economic, environmental and health aspects
- In India, MSW is disposed of in an unregulated and unscientific manner in open dumpsites
- Most dumps lack systems for leachate collection, landfill gas collection or monitoring, nor do they use inert materials to cover the waste
- This results in ground and surface water contamination from runoff and lack of covering, air pollution caused by fires resulting in severe health problems
- Recent WłE projects have not yielded positive results since technologies were deployed without considering the local waste characteristics
- Based on the composition of Mumbai MSW, processing the waste in a WtE facility would reduce its volume significantly, thus freeing up land that would otherwise have been used for landfills
- With space in urban areas at a premium $\mathrm{W}+\mathrm{E}$ provides an effective way to reduce the volume of waste

SWM Waste Processes

What about Investor Returns?

Attractive Opportunity

Which is

better?

Same project ... but ...
Quantifies penalties and uncertainties ... Eenctio

Example of Risk-adjusted Returns ...

REST OF THE SLIDES ELABORATE ON

VARIOUS ASPECTS OF
 ENSURING BANKABILITY MITIGATING RISKS

Ensuring Bankability Requires ...

MSW Value Chain \& Recommendation

Project Size Considerations

- Rural and small towns
- Activities include waste collection, transportation to local dump-yards, limited segregation, prospects of composting and bio-methanation
- Tier II cities and regions in metros
- Activities include waste collection, transportation to local landfill, tenders out for scientific landfills, composting, RDF, and waste to energy

Metropolitan cities

- Activities include integrated waste processing landfill facilities, waste to energy facilities and landfill gas to energy facilities
$\checkmark \quad$ Ideal for C\&T and
Processing
\checkmark WTE is expensive
$\checkmark \quad$ Processing \& WTE in this segment is the suggested sweet-spot
$\checkmark \quad$ Leverage efforts in the
1,000 TPD segment and replicate projects for sustained success

Partnering for Successful Mid-to-Large Projects

Goals

Met By

(1) Focus on Processing \& WtE
(2) Quantify risks and educate investors / lenders
(2) Ensure robust project returns
(3) Deploy cost-effective solutions
(4) Work with synergistic partners
(5) Ensure successful project execution \& long term ownership

The Winning Partnership Formula for Processing \& WTE Projects

Global Expertise

PQ's, Design, Financing and O\&M

Local Partner

Procurement, Execution \&
Commissioning

Smart Capital

Investors with deep SWM/WTE understanding
Lenders aware of risks

Project Lead

Project Partner

Financial Closure

The Ideal SWM/WTE Project Structure

Building a Foundation for a Long Term Win-Win Relationship

Example SWM/WTE Business Models

A Well-Defined Structure and Business Model is Key to Profitability and Bankability of the Project

A Example BOOT SWM/WTE Business Model

Fixed Monthly Charge

Covers project capital
expenditures
Monthly Fixed O\&M
Covers fixed monthly costs

Variable O\&M

Based on tonnage of waste

Contractual Considerations

- Type: BOO, BOOT, BOT etc
- Minimum off-take
- MSW calorific values
- Plant outages / shutdowns
- Equity structures \& exit scenarios
- Termination and take over
- Delays, liabilities \& damages
- Force Majeure \& Indemnity
- Jurisdiction \& arbitration
- Others

SWM/WTE Project Development Considerations

- Partnering with technically and commercially capable comp.
- Ensure similar corporate culture

Partner Qual

The Consortium SPV Structure Advantages

- MSW segregation, processing and WTE Projects
- Leverage partners technical prequalifications to win projects
- Combine Partners' financial strengths for BOO/T projects
- Utilize local cost benefits to boost chances of L1 awards
\square Owning and operating project is SPV's core competency
- Bankable contract ensures financial closure \& robust returns
- Deploy global \& local references

The goal of the consortium is to build effective long-term partnerships delivering robust project returns

Additional Financing Considerations

A Case Study - Water BOOT

■ Identified solid project opportunities with industrial clients having excellent credit ratings and good payment history

■ Identified local partner (LP) with very good track record and references

- Enabled technical collaboration between client and LP to submit technical bid
- Advised partners to develop tariff / pricing / operational model such that NPV would be lowest
$\boxtimes \quad$ Led or supported (as need be) negotiations on water purchase agreement. Explained implications of various WPA clauses to water consumer and EPC partner
- Developed financial models for project, tariff, forex impact etc

■ Supported client in due diligence, negotiating EPC contract, share holding in SPV etc
■ Advised SPV location, structure etc

- Introduced client to banks to ensure bankability of project and lending terms

■ Introduced legal counsel with experience in water to draft local agreements
$\square \quad$ Held detailed discussions with tax consultants when evaluating tax implications of business model options
$\square \quad$ Addressed critical stumbling blocks during project development and contract negotiations using innovative project planning, structures or approaches

Select Project Opportunities*

\square Projects tracked: ~12,000 TPD across India \square Projects are either in PPP, BOOT, DBFOO etc models

Tenders Geographical Analysis (in TPD)

Tenders Status Analysis (in TPD)

References

> Encito Advisors proprietary research
> India's annual generation of urban waste in 2025 - World Bank Reports
> MSW Potential in India - Ministry of New \& Renewable Energy (MNRE)
> Ministry of Agriculture (MOA)
> Ministry of Environment \& Forests (MOEF)
> MNRE Annual Reports
> WBI Development Studies
> National Solid Waste Association of India (NSWAI)

Encito Advisors

Strategic \& Financial Advisory Services

Services Focus

Expertise

Thank you ...

